Инженеры MIT научились создавать парные физические отпечатки на микросхемах — это открывает путь к сверхнадёжной идентификации устройств
Каждая микросхема CMOS уникальна из-за микроскопических вариаций при производстве — как отпечаток пальца у человека. Эти различия формируют физически неклонируемую функцию (PUF), которую используют для аутентификации устройств. Однако традиционные схемы требуют хранения на внешних серверах, что создаёт уязвимости и усложняет защиту.
Инженеры Массачусетского технологического института (MIT) предложили принципиально новый подход: они научились создавать «двойные отпечатки» на паре чипов ещё на этапе производства. Для этого по краю двух будущих микросхем формируют пары транзисторов и вызывают контролируемый пробой с помощью светодиода. Благодаря случайным вариациям в структуре, каждая пара получает уникальный, но совпадающий отпечаток. После разделения чипов их PUF-ключи совпадают более чем на 98% — этого достаточно для надёжной взаимной аутентификации.

Главное преимущество — секретные данные никогда не покидают пределы чипа. Два устройства могут напрямую подтверждать подлинность друг друга, не обращаясь к серверу и не передавая ключи по сети. Метод совместим со стандартным производством CMOS, не требует дорогих материалов и подходит для массового внедрения, включая энергоэффективные медицинские сенсоры и IoT-устройства.
Авторы отмечают, что в будущем технология позволит создавать защищённые пары устройств — например, «умную таблетку» и носимый патч для мониторинга здоровья, которые смогут аутентифицировать друг друга без посредников. Это открывает новые горизонты для аппаратной безопасности и защищённой передачи данных.
Фундаментальная физика производства чипов может стать основой для новых стандартов безопасности.













